博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
kafka java 生产消费程序demo示例
阅读量:5974 次
发布时间:2019-06-19

本文共 4325 字,大约阅读时间需要 14 分钟。

  hot3.png

首先我们需要新建一个maven项目,然后在pom中引用kafka jar包,引用依赖如下:

org.apache.kafka
kafka_2.10
0.8.0

我们用的版本是0.8, 下面我们看下生产消息的代码:

package cn.outofmemory.kafka;import java.util.Properties;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/** * Hello world! * */public class KafkaProducer {    private final Producer
producer; public final static String TOPIC = "TEST-TOPIC"; private KafkaProducer(){ Properties props = new Properties(); //此处配置的是kafka的端口 props.put("metadata.broker.list", "192.168.193.148:9092"); //配置value的序列化类 props.put("serializer.class", "kafka.serializer.StringEncoder"); //配置key的序列化类 props.put("key.serializer.class", "kafka.serializer.StringEncoder"); //request.required.acks //0, which means that the producer never waits for an acknowledgement from the broker (the same behavior as 0.7). This option provides the lowest latency but the weakest durability guarantees (some data will be lost when a server fails). //1, which means that the producer gets an acknowledgement after the leader replica has received the data. This option provides better durability as the client waits until the server acknowledges the request as successful (only messages that were written to the now-dead leader but not yet replicated will be lost). //-1, which means that the producer gets an acknowledgement after all in-sync replicas have received the data. This option provides the best durability, we guarantee that no messages will be lost as long as at least one in sync replica remains. props.put("request.required.acks","-1"); producer = new Producer
(new ProducerConfig(props)); } void produce() { int messageNo = 1000; final int COUNT = 10000; while (messageNo < COUNT) { String key = String.valueOf(messageNo); String data = "hello kafka message " + key; producer.send(new KeyedMessage
(TOPIC, key ,data)); System.out.println(data); messageNo ++; } } public static void main( String[] args ) { new KafkaProducer().produce(); }}

下面是消费端的代码实现:

package cn.outofmemory.kafka;import java.util.HashMap;import java.util.List;import java.util.Map;import java.util.Properties;import kafka.consumer.ConsumerConfig;import kafka.consumer.ConsumerIterator;import kafka.consumer.KafkaStream;import kafka.javaapi.consumer.ConsumerConnector;import kafka.serializer.StringDecoder;import kafka.utils.VerifiableProperties;public class KafkaConsumer {    private final ConsumerConnector consumer;    private KafkaConsumer() {        Properties props = new Properties();        //zookeeper 配置        props.put("zookeeper.connect", "192.168.193.148:2181");        //group 代表一个消费组        props.put("group.id", "jd-group");        //zk连接超时        props.put("zookeeper.session.timeout.ms", "4000");        props.put("zookeeper.sync.time.ms", "200");        props.put("auto.commit.interval.ms", "1000");        props.put("auto.offset.reset", "smallest");        //序列化类        props.put("serializer.class", "kafka.serializer.StringEncoder");        ConsumerConfig config = new ConsumerConfig(props);        consumer = kafka.consumer.Consumer.createJavaConsumerConnector(config);    }    void consume() {        Map
topicCountMap = new HashMap
(); topicCountMap.put(KafkaProducer.TOPIC, new Integer(1)); StringDecoder keyDecoder = new StringDecoder(new VerifiableProperties()); StringDecoder valueDecoder = new StringDecoder(new VerifiableProperties()); Map
>> consumerMap = consumer.createMessageStreams(topicCountMap,keyDecoder,valueDecoder); KafkaStream
stream = consumerMap.get(KafkaProducer.TOPIC).get(0); ConsumerIterator
it = stream.iterator(); while (it.hasNext()) System.out.println(it.next().message()); } public static void main(String[] args) { new KafkaConsumer().consume(); }}

注意消费端需要配置成zk的地址,而生产端配置的是kafka的ip和端口。

转载于:https://my.oschina.net/boonya/blog/1789448

你可能感兴趣的文章
程序员全国不同地区,微信(面试 招聘)群。
查看>>
【干货】界面控件DevExtreme视频教程大汇总!
查看>>
Java小细节
查看>>
poj - 1860 Currency Exchange
查看>>
洛谷 P2486 BZOJ 2243 [SDOI2011]染色
查看>>
数值积分中的辛普森方法及其误差估计
查看>>
Web service (一) 原理和项目开发实战
查看>>
跑带宽度多少合适_跑步机选购跑带要多宽,你的身体早就告诉你了
查看>>
Javascript异步数据的同步处理方法
查看>>
iis6 zencart1.39 伪静态规则
查看>>
SQL Server代理(3/12):代理警报和操作员
查看>>
Linux备份ifcfg-eth0文件导致的网络故障问题
查看>>
2018年尾总结——稳中成长
查看>>
通过jsp请求Servlet来操作HBASE
查看>>
Shell编程基础
查看>>
Shell之Sed常用用法
查看>>
Centos下基于Hadoop安装Spark(分布式)
查看>>
mysql开启binlog
查看>>
设置Eclipse编码方式
查看>>
分布式系统唯一ID生成方案汇总【转】
查看>>